206 research outputs found

    Bottleneck model revisited: An activity-based perspective

    Get PDF
    The timing of commuting trips made during morning and evening peaks has typically been investigated using Vickrey’s bottleneck model. However, in the conventional trip-based approach, the decisions that commuters make during the day about their activity schedules and time use are not explicitly considered. This study extends the bottleneck model to address the scheduling problem of commuters’ morning home-to-work and evening work-to-home journeys by using an activity-based approach. A day-long activity-travel scheduling model is proposed for the simultaneous determination of departure times for morning and evening commutes, together with allocations of time during the day among travel and activities undertaken at home or at the workplace. The proposed model maximizes the total net utility of the home-based tour, which is the difference between the benefits derived from participating in activities and the disutility incurred by travel between activity locations. The properties of the model solution are analytically explored and compared with the conventional bottleneck model for a special case with constant marginal-activity utility. For the case with linear marginal-activity utility, we develop a heuristic procedure to seek the equilibrium scheduling solution. We also explore the effects of marginal-work utility (or the employees’ average wage level) and of flexible work-hour schemes on the scheduling problem in relation to the morning and evening commuting tours.postprin

    Optimization of Number of Operators and Allocation of New Lines in an Oligopolistic Transit Market

    Get PDF
    This paper proposes a novel model for determining the optimal number of transit operators and the allocation of new lines in an oligopolistic transit market. The proposed model consists of three interrelated sub-models that are associated with three types of players; namely, transit authority, transit operators, and transit passengers. In practice, the operating cost per unit of transit line of each operator is decreasing in the number of lines that it operates. These effects which are referred to as the scale economies of transit operations are explicitly incorporated in the proposed model. On the basis of a logit-type transit passenger travel choice sub-model with elastic demand, the fares and frequencies of transit services are determined by an oligopolistic competitive equilibrium model (i. e. transit operator sub-model). The transit authority sub-model for optimization of the number of operators and the allocation of new lines is expressed as a 0-1 integer programming problem. It can be solved by an implicit enumeration heuristic solution algorithm. Numerical results show that both the scale economies and the market demand level have significant impacts on the optimal number of operators and the allocation schemes of new lines. Ignoring the effects of scale economies on transit operations may lead transit authorities to make biased decisions. © 2010 Springer Science+Business Media, LLC.postprin

    Editorial: Advanced methods for public transport system management

    Get PDF
    published_or_final_versionSpringer Open Choice, 01 Dec 201

    Development of a Bidirectional Pedestrian Stream Model with an Oblique Intersecting Angle

    Get PDF
    This paper establishes a mathematical model that can represent the conflicting effects of two pedestrian streams that have an oblique intersecting angle in a large crowd. In a previous paper, a controlled experiment in which two streams of pedestrians were asked to walk in designated directions was used to model the bidirectional pedestrian stream of certain intersecting angles. In this paper, the writers revisit that problem and apply the Bayesian inference method to calibrate an improved model with the controlled experiment data. Pedestrian movement data are also collected from a busy crosswalk by using a video observation approach. The two sets of data are used separately to calibrate the proposed model. With the calibrated model, the relationship between speed, density, and flow is studied in both the reference and conflicting streams, and a prediction is made regarding how these factors affected the interactions of moving pedestrian streams. It is found that the speed of one stream not only decreases with its total density, but also decreases with the ratio of its flow relative to the total flow, i.e., the speed of the pedestrians decreases if their stream changes from the major to minor stream. It is also observed that the maximum disruption that was induced by pedestrian flow from an intersecting angle occurs when the angle is approximately 135°.postprin

    Environmentally sustainable toll design for congested road networks with uncertain demand

    Get PDF
    This article proposes a new road toll-design model for congested road networks with uncertain demand that can be used to create a sustainable urban transportation system. For policy assessment and strategic planning purposes, the proposed model extends traditional congestion pricing models to simultaneously consider congestion and environmental externalities due to vehicular use. Based on analyses of physical and environmental capacity constraints, the boundary conditions under which a road user on a link should pay either a congestion toll or an extra environmental tax are identified. The sustainable toll design model is formulated as a two-stage robust optimization problem. The first-stage problem before the realization of the future travel demand aims to minimize a risk-averse objective by determining the optimal toll. The second stage after the uncertain travel demand has been determined is a scenario-based route choice equilibrium formulation with physical and environmental capacity constraints. A heuristic algorithm that combines the sample average approximation approach and a sensitivity analysisbased method is developed to solve the proposed model. The upper and lower bounds of the model solution are also estimated. Two numerical examples are given to show the properties of the proposed model and solution algorithm and to investigate the effects of demand variation and the importance of including risk and environmental taxation in toll design formulations. © Taylor & Francis Group, LLC.postprin

    A Bayesian modeling approach to bi-directional pedestrian flows in carnival events

    Get PDF
    published_or_final_versio

    A time-dependent transit equilibrium assignment model for congested transit network

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Step tolling in an activity-based bottleneck model

    Get PDF
    This paper investigates the step tolling problem in an activity-based bottleneck model in which activity scheduling utilities of commuters at home and at work vary by the time of day. The commuters choose their departure times from home to work in the morning to maximize their own scheduling utility. Step tolling models with homogeneous and heterogeneous preferences are presented. The properties of the models and the optimal step toll schemes with constant and linear time-varying marginal activity utilities are analytically explored and compared. It was found that for a given number of toll steps the efficacy of a step toll in terms of queuing removal rate is higher in the activity-based bottleneck model with linear marginal utilities than in the conventional bottleneck model with constant marginal utilities, and ignoring the preference heterogeneity of commuters would underestimate the efficacy of a step toll

    Advancement of the annual traffic census in Hong Kong

    Get PDF
    This paper summarises the process, findings and recommendations of a recently completed joint university consultancy project that reviewed the annual traffic census (ATC) in Hong Kong. The results of a survey that assessed the usefulness of the census report are presented, together with an overview of the existing traffic data collection process and traffic detection equipment. Areas for improvement are then identified, including the sampling strategies for the collection of vehicle classification and occupancy data, the procedure for the development of group scaling factors, the method for the selection of core and coverage stations, the approaches to developing growth factors and traffic flow estimation, the presentation method and database structure of the census framework, and the manpower requirements. Based on these identified areas, a new computer program is developed to integrate all of the tasks of the census report and to produce the results in CD-ROM format. Finally, concluding remarks are given together with recommendations for further study.published_or_final_versio
    corecore